St. Olaf College ## Local Ecology Research Papers Factors affecting zooplankton diversity and community composition in two suburban lakes Katie Hoffman 2020 © Katie Hoffman, 2020 "Factors affecting zooplankton diversity and community composition in two suburban lakes" by Katie Hoffman is licensed under a 0.05). With the exception of the first sampling date, Arrowhead Lake was more even than Firemen's Clayhole (Table 3). Zooplankton family diversity was highest in Arrowhead Lake (Table 3). Zooplankton family diversity trended upward with increasing dissolved oxygen concentrations but was not significantly related to any environmental variables (Fig. 6). #### **Discussion** #### Family Composition There was a shift in community composition in both lakes. Both lakes were initially dominated by cladocerans, but in October, the proportion of Cladocera to Copepoda was closer to one. This is contrary to what Ayub et al. (2018) found in their study of Chashma Lake in Pakistan. They found that copepods dominated the zooplankton community in the fall and rotifers dominated the community in the winter. Additional studies found that copepod nauplii had extremely high densities in lakes with fish, possibly because of differences in feeding habits and size factors (Hu et al. 2019). These differences may be primarily because we did not include copepod nauplii in the analysis of zooplankton diversity or community composition. There were also drastic declines in zooplankton density in October when compared to September sampling dates. This is in line with findings that zooplankton abundances decrease in the winter (Hu et al. 2019). In the beginning of October, there were several days with cooler than average temperatures as well as some days with warmer than average temperatures. These temperature fluctuations may also have contributed to the decline in zooplankton density on October 13th. One difference between the two lakes that was not analyzed in the analysis of family diversity and community composition was that Arrowhead Lake had *Daphnia spp*. And Firemen's Clayhole had *Ceriodaphnia spp*. Both of these genera belong to the family Daphniidae, so the difference between the two lakes was not explored in our analysis. However, *Ceriodaphnia* are found in a range of water bodies worldwide (Merrix-Jones et al. 2013), so further analysis could explore the differences between the two lakes to determine why *Ceriodaphnia* only appeared in Firemen's Clayhole. Family Evenness and Diversity Arrowhead Lake and Firemen's Clayhole were very similar in the total number of families and types of zooplankton, but Arrowhead Lake did have one additional Daphnia family. This difference may very well be due to the larger size of Arrowhead Lake. Arrowhead is more than twice the size of Firemen's Clayhole. Many studies have found that size is a deciding factor in determining species richness across all still water body types (Dodson et al. 2000; Merrix-Jones et al. 2013). Larger lakes provide a greater number of habitats for zooplankton and may offer more refuge from fish predation. However, Arrowhead Lake is much shallower than Firemen's Clayhole. Depth is often an important factor in allowing zooplankton to escape fish predation, as many zooplankton species will migrate to the bottom of the lake during the day to avoid fish predation. Arrowhead Lake also appears to be driving all of the linear regressions for family richness. This is unsurprising, as Arrowhead Lake has a family richness of 7, and Firemen's Clayhole has a family richness between 5 and 6. It is likely that this study differs from others because of the weight given to Arrowhead Lake in this analysis. None of the environmental variables significantly affected the Shannon diversity index but increases in dissolved oxygen concentrations did appear to increase diversity. This could be due to a number of factors and may be related to the amount of nutrients within the lake that ultimately support photosynthesis. In addition, Arrowhead Lake had higher dissolved oxygen concentrations, and is aerated year-round. The aeration could also account for the higher dissolved oxygen concentrations. #### Future Research Directions Ultimately, we will need additional sites to determine the impact that lake size and lake depth have on zooplankton community composition. We will also need to identify zooplankton as near to species as possible to gain a better understanding of community composition within both Arrowhead Lake and Firemen's Clayhole as well as any additional lakes in the study as analysis at the family level did not show major differences between lakes. A closer analysis of zooplankton community composition could reveal significant differences between the lakes. Additionally, some zooplankton exhibit phenotypic responses to fish predation, and fish predation is known to induce selective pressures on zooplankton size (Welborn, Skelly & Werner 1996). Examining the impacts of fish predation on zooplankton communities would deepen the understanding of each lake's structure. #### Conclusion Overall, I found that there were drastic declines in zooplankton density in October, shifts in zooplankton community composition, and environmental variables that were correlated with zooplankton family diversity and richness. Further and more extensive research is needed to address community composition shifts over time. A higher sampling resolution as well as a larger time frame will better capture shifts in community composition and changes in diversity, and additional sites would increase the power of statistical analysis for environmental variables. ### Acknowledgments I would like to thank Alexandra Raduege for her help sampling and her masterful canoeing skills, Dr. Kathleen Shea for her support and encouragement on this project, and Dr. Jennifer Brentrup and Ally Bode for help identifying zooplankton. I would also like to thank Dr. Pat Ceas and Colleen Telander for aid in obtaining permits for sampling Arrowhead Lake and Firemen's Clayhole. Finally, I would like to thank Jane Kleinman and Paul Hoffman for the use of their canoe and their support of this project. #### Literature Cited - Aliberti, M.A., et. al. Allan, E., Allard, S., Bauer, D.J., Beagen, W., Bradt, S.R., Carlson, B., Carlson, S.C., Doan, U.M., Dufresne, J.W., Godkin, T., Greene, S., Haney, J.F., Kaplan, K., Maroni, E., Melillo, S., Murby, A.L., Smith, J.L., Ortman, B., Quist, J.E, Reed, S., Rowin, T., Schmuck, M., Stemberger, R.S., Travers, B. 2013. An Image-Based Key To The Zooplankton Of North America. Center for Freshwater Biology: University of New Hampshire. - Arnott, S. E., M. P. Celis-Salgado, R. E. Valleau, A. M. DeSellas, A. M. Paterson, N. D. Yan, J. P. Smol, J. A. Rusak. 2020. Road Salt Impacts Freshwater Zooplankton Concentrations below Current Water Quality Guidelines. Environmental Science and Technology 54: 9398-9407. - Ayub, H., I. Ahmad, S. L. Shah, M. Z. Bhatti, N. Shafi, M. Qayyum. 2018. Studies on Seasonal and Spatial Distribution of Zooplankton Communities and Their Diversity Indices at Chasma Lake, Pakistan. Pakistan Journal of Zoology 50(4): 1293-1298. - Celik, K., A. Bozkurt, T. O. Sevindik. 2017. Seasonal Dynamics of the Zooplankton Community in the Temperate Eutrophic Caygören Reservoir (Balikesir), Turkey Related to Certain Physicochemical Parameters of Water. Turkish Journal of Fisheries and Aquatic Sciences 19: 503-512. - Detmer, T. M. 2019. Zooplankton nearshore compared to offshore in historically fishless lakes of high elevation are influenced by the introduction of planktivorous fish and water residence time. Journal of Plankton Research 4(2): 154-164. - Dodson, S. I., S. E. Arnott, and C. L. Cottingham. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679. - Dodson, S. I., A. L. Newman, S. Will-Wolf, M. L. Alexander, M. P. Woodford & S. Van Egeren. 2009. The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). Journal of Plankton Research 31: 93-100. - Hu, B., Hu, X., Nie, X., Wu, N., Hong, Y., & Qin, H. 2019. Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors in a sub-lake of Lake Poyang, China. PeerJ 7:e7590: http://doi.org/10.7717/peerj.7590 - Merrix-Jones, F. L., S. J. Thackeray, S. J. Ormerod. 2013. A global analysis of zooplankton in natural and artificial fresh waters. Journal of Limnology 72: 140-153. - Spadinger, R., G. Maier. 1999. Prey Selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshwater Biology 41: 567-573. - Sun, Z., J. E. Brittain, E. Sokolova, J. Thygesen, S. J. Salveit, S. Rauch, S. Meland. 2018. Aquatic biodiversity in sedimentation ponds receiving road runoff What are the key drivers?. Science of the Total Environment 610-611: 1527-1535. - Welborn, G. A., D. K. Skelly, E. E. Werner. 1996. Mechanisms Creating Community Structure Across a Freshwater Habitat Gradient. Annual Review of Ecology and Systematics 27: 337-363. **Table 1.** All families found in Arrowhead Lake and Firemen's Clayhole and densities (individuals/L). | Taxa | Family | Arrowhead 9/5 | Firemen's
Clayhole 9/5 | Arrowhead 9/13 | Firemen's
Clayhole 9/13 | Arrowhead 10/10 | Firemen's
Clayhole 10/10 | |-----------|-----------------|---------------|---------------------------|----------------|----------------------------|-----------------|-----------------------------| | Cladocera | Bosminidae | 1450.00 | 199.38 | 1894.44 | 1225.35 | 111.11 | 176.06 | | Cladocera | Chydoridae | 30.56 | 11.00 | 88.89 | 0.00 | 5.56 | 23.47 | | Cladocera | Sididae | 102.78 | 154.05 | 166.67 | 142.61 | 5.56 | 7.04 | | Cladocera | Daphniidae | 194.44 | 36.09 | 838.89 | 19.37 | 66.67 | 32.86 | | Copepoda | Diaptomidae | 91.67 | 79.67 | 255.56 | 111.80 | 66.67 | 124.41 | | Copepoda | Cyclopidae | 86.11 | 9.68 | 461.11 | 19.37 | 166.67 | 16.43 | | Copepoda | Temoridae | 108.33 | 0.00 | 100.00 | 0.00 | 55.56 | 0.00 | | Cladocera | Total Cladocera | 1777.78 | 400.53 | 2988.89 | 1387.32 | 188.89 | 239.44 | | Copepoda | Total Copepoda | 286.11 | 89.35 | 816.67 | 150.53 | 288.89 | 140.85 | | Total | | 4127.78 | 979.75 | 7611.11 | 3056.34 | 955.56 | 760.56 | **Figure 1.** Zooplankton densities (individuals / L) in Arrowhead Lake and Firemen's Clayhole by taxa (Cladocera/Copepoda) on September 5 and 13 and October 10. **Figure 2.** Abundances of zooplankton in each family found at Arrowhead Lake and Firemen's Clayhole on September 5 and 13 and October 10. Darker colors represent higher densities. **Figure 3.** Zooplankton densities (individuals / L) in Firemen's Clayhole for each family on September 5 and 13 and October 10. **Figure 4.** Zooplankton densities (individuals / L) in Arrowhead Lake for each family on September 5 and 13 and October 10. **Table 2.** Physical and chemical conditions observed in Arrowhead Lake and Firemen's Clayhole on each zooplankton sampling date. | Site | Date | Temperature | pН | cond | Dissolved Oxygen | Turbidity | | |-----------------------|------------|----------------------------------|-------------------------|------------------------|-------------------------|-----------|--| | | | (°C) | | (uS/cm) | (% saturation) | (NTU) | | | Arrowhead
Lake | 9/5/2020 | 21.45 | 7.8 | 524.4 | 89.2 | 5.99 | | | Firemen's
Clayhole | 9/5/2020 | 24.51 | 9.08 | 384.9 | 97.3 | 1.96 | | | Arrowhead
Lake | 9/13/2020 | 15.99 | 7.76 | 519.1 | 93.7 | 4.51 | | | Firemen's
Clayhole | 9/13/2020 | 18.79 | 8.21 | 399.6 | 85.7 | 1.19 | | | Arrowhead
Lake | 10/10/2020 | 14.22 | 8.05 | 530.2 | 102.5 | 3.27 | | | Firemen's
Clayhole | 10/10/2020 | 15.77 | 8.35 | 424.9 | 107.5 | 0.79 | | | | | Colored Dissolved Organic Matter | chlorophyll
a (ug/L) | NO ₃ (mg/L) | NH ₄ (mg/L) | PAR | | | Arrowhead
Lake | 9/5/2020 | 29.81 | 20.92 | 0.3 | 0.3 | NA | | | Firemen's
Clayhole | 9/5/2020 | 11.92 | 1.89 | 0 | 0.1 | NA | | | Arrowhead
Lake | 9/13/2020 | 32.16 | 13.89 | 0.1 | 0.4 | NA | | | Firemen's
Clayhole | 9/13/2020 | 13.42 | 1.55 | 0 | 0.1 | NA | | | Arrowhead
Lake | 10/10/2020 | 30.92 | 14.38 | 0.2 | 0.2 | 3812.9 | | | Firemen's
Clayhole | 10/10/2020 | 12.63 | 2.23 | 0 | 0.1 | 3967.2 | | **Table 3.** Family richness, evenness, and diversity scores for Arrowhead Lake and Firemen's Clayhole on all three sampling dates. | Site | Sampling
Date | Shannon Diversity | Family
Richness | Family Evenness | | |--------------------|------------------|--------------------------|--------------------|-----------------|--| | Arrowhead Lake | 9/5/2020 | 1.108 | 7 | 0.569 | | | Firemen's Clayhole | 9/5/2020 | 1.380 | 6 | 0.770 | | | Arrowhead Lake | 9/13/2020 | 1.438 | 7 | 0.739 | | | Firemen's Clayhole | 9/13/2020 | 0.699 | 5 | 0.434 | | | Arrowhead Lake | 10/10/2020 | 1.610 | 7 | 0.827 | | | Firemen's Clayhole | 10/10/2020 | 1.315 | 6 | 0.734 | | **Figure 5.** Environmental and chemical factors compared to specific zooplankton family richness for each study date and lake. A. Zooplankton family richness positively associated with increasing turbidity (p=0.052, R^2 =0.56). B. Zooplankton family richness positively associated with increasing conductivity (p=0.017, R^2 =0.74). C. Zooplankton family richness positively associated with increasing colored dissolved organic matter (p=0.023, R^2 =0.70). D. Zooplankton family richness positively associated with increasing nitrate concentration (p=0.07, R^2 =0.5). **Figure 6.** Increasing Shannon Diversity Index with increasing dissolved oxygen concentrations (p=0.1023, $R^2=0.409$).