PHYSICS COLLOQUIUM MONDAY APRIL 11, 2016

3:00 pm RNS 290

TITLE

Magnetism and Mu dynamics in Vanadium Dioxide compounds and other current research interests

PRESENTER
P. W. Mengyan (Project PI)

ABSTRACT

Vanadium Dioxide (VO₂) compounds show a metal-semiconductor transition (MST) near room temperature (stoichiometric VO₂ is metallic T > $T_{MST} \approx 340$ K and semiconducting T < T_{MST}) that is accompanied by a structural transition; both can be triggered by thermal, optical, electrical or barometric means. This ultra fast ($t \sim 10^{-12} - 10^{-3}$ [sec] timescale) transition has been studied for decades and there is still considerable disagreement regarding the mechanism(s) responsible for these transitions. Incorporation of a few atomic percent of hydrogen in VO₂ stabilizes the metallic phase down to 200 K. Other impurities such as tungsten, titanium, gold, chromium or fluorine lower or raise T_{MST} without significantly modifying the electronic, optical or switching properties. The effects that dopants have on the material properties are fairly well known, however, the *role* these dopants play in modifying them is far from understood. [1]

Our group has been working on characterizing the local magnetic environment and understanding the properties of hydrogen in VO₂ compounds by way of Muon Spin Rotation and Relaxation (MuSR) experiments and long wavelength neutron diffraction measurements. MuSR measurements implant 100% spin polarized and positively charged muons (μ^+ : q=+e, $S=\frac{1}{2}$, $m_{\mu}\approx\frac{1}{9}m_p$, $\tau_{\mu}\sim$ 2.2 μ s) in a material where the μ^+ directly probes the local [microscopic] magnetic and electronic environment while also serving as an experimentally accessible analog to a hydrogen impurity. [2]

This talk will discuss our recent MuSR experiments focused on investigating the Mu/H properties within VO_2 compounds and the newly discovered (by us) low temperature magnetic phase [3]. Additionally, this talk will provide an introduction to MuSR and a brief summary of some of our other recent projects, which include

- Mu/H formation, stability and motion in transparent conducting oxides [4]
- Characterization of the Mu impurity in SiGe alloys
- Magnetism in Mn doped II-IV-V₂ chalcopyrites
- Survey of spin polaron candidate materials

Additional detail and references are available at www.phys.ttu.edu/~pmengyan.

^[1] i.e.: F.J. Morin, *Phys Rev Lett* **3** (1959) 34.; M.M. Qazilbash, et al., *Science* **318** (2007) 1750.; M.S. Laad, et al. *Phys Rev B* **73** (2006) 195120.; A. Pergament, *Phys: Condens Matt* **15** (2003) 3217.; A. Cavalleri, et al. *Phys Rev Lett* **87** (2001) 237401-1

^[2] J.H. Brewer, in *Encyclopedia of Applied Physics*, edited by G.L. Trigg, (VCH, New York, 1994), Vol 11, pp.23-53.; A. Yaouanc and P.D. de Reotier, *Muon Spin Rotation, Relaxation and Resonance: Applications to Condensed Matter* (Oxford Press, New York, 2011).

^[3] P.W. Mengyan, et al, J Phys Conf Ser **551** (2014) 012017

^[4] i.e.: R.C. Vilao, et al. *Phys Rev B* **92** (2015) 081202(R).; P.W. Mengyan, <u>RB1520339</u>: Effects of IR Illumination on <u>Mu Dynamics and Mu⁰ Formation in TiO₂. RAL/ISIS Experimental Reports</u>. (2015)