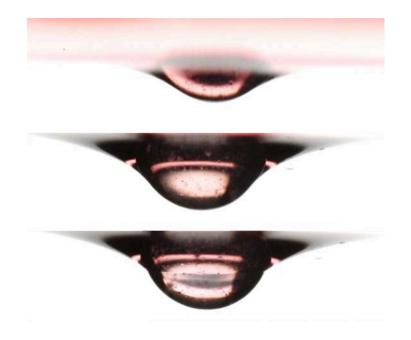


TST. OLAF PHYSICS DEPARTMENT


COLLOQUIUM SERIES

Fun with the fluid-fluid interface: from snails to

Cheerios

Sungyon Lee

Department of Mechanical Engineering at the University of Minnesota

From raindrops to clumping Cheerios in a breakfast bowl, fluid surfaces hold many surprises that enrich the world around us. In this talk, we discuss two phenomena involving the fluid-fluid interface that find inspiration in very different places. First, water snails utilize rhythmic undulations to collect food floating on the water surface. Inspired by this observation, we develop a simplified robotic snail that generates interfacial pumping flows with periodic undulations. Our experiments show that the pumping rate has a nonmonotonic dependence on the wave speed of surface undulations. We rationalize this surprising experimental observation with a thin-film model.

Second, known as the Cheerios effect, floating particles tend to aggregate due to surface tension and form a close-packed assembly, or a granular raft. Granular rafts are simple composite materials that exhibit both elastic and granular properties. We compress granular rafts and observe two distinct modes of failure showcasing their dual nature: system-wide buckling and the expulsion of individual particles. We explain our experimental results with a new "composite" model that compares the energies associated with each failure mode.

> Wednesday, October 15 3:00 PM | RNS 210